

Pipelined Microprocessor

VLSI DESIGN LAB EE705

Sadaf Parwaiz (153079016)

Meet Haria (153079029)

Kaushal Bhuva (163074003)

Kiran Kumar Grandhi (163074007)

 Problem Statement:

 To design a six stage pipelined microprocessor.

 Introduction:

 The instruction pipelining is a technique that is used to execute multiple instructions

parallel with a delay of one clock cycle.

 The advantage of this technique is that it allows a faster throughput. In pipelining, the instruction

execution is usually divided into stages. The number of stages vary depending onimplementation.

In our case, we have six stage pipelined structure. The instruction is split into six different steps

which can be executed in parallel and the instructions can be processed concurrently, i.e. starting

one instruction before finishing the previous one.

Pipelining increases the instruction throughput, but does not reduce latency, i.e. the time needed

to complete a single instruction.

Rather, pipelining may increase the latency due to additional overhead by breaking the

computation into separate steps, and depending on how often the pipeline stalls, or needs to be

flushed.

There are 3 types of hazards that occur while implementing pipelining:

 Structural hazard

 When a machine is pipelined, the overlapped execution of instructions require the

pipelining of functional units and duplication of resources to allow all possible set of instructions

in the pipeline. If some combination of instructions cannot be accommodated because of a

resource conflict, the machine is said to have a structural hazard.

 Data hazard

 Data hazard occurs when a current instruction needs the resource and previous instruction

is still under execution. Data stalling and forwarding technique is used to prevent data hazard.

 2

 Control hazard

 If jump or branch instruction occurs, the already fetched instructions after jump or branch

needs to be flushed. This decreases the throughput which is a control hazard.

The six stage pipeline that is implemented, eliminates the two hazards, structural and data hazard.

The structural hazard is eliminated by using two separate memories: instruction memory and data

memory.

The problem of Data hazard is solved by introducing stalling and forwarding logic.

 Implementation of Pipelined Microprocessor Architecture

16 bit processor RISC architecture is implemented. Six stages of pipelined architecture are as

follows:

 Fetch stage

 Decode stage

 Register readstage

 Execute stage

 Data Memory Accessstage

 Write back stage

Eight registers, R0 to R7, each of 16 bits are used. The logic operation in each stage is purely

combinational. The data flow is sequential in nature.

 Instruction format

There are three types of instruction formats that we have decided to implement:

1. R-type instruction format (Register type)

2. I-type instruction format (Immediate type)

3. J-type instruction format (Jump type)

 3

 Instruction set

Instruction Opcode Register or Immediate values

ADD 0000 RA RB RC 0 00

ADC 0000 RA RB RC 0 10

ADZ 0000 RA RB RC 0 01

ADI 0001 RA RB 6-Bit Immediate

NDU 0010 RA RB RC 0 00

NDC 0010 RA RB RC 0 10

NDZ 0010 RA RB RC 0 01

SHL 1010 RA RB RC 0 00

SHR 1010 RA RB RC 0 01

SAR 1010 RA RB RC 0 10

RTR 1010 RA RB RC 0 11

LHI 0011 RA 9 bit Immediate

LW 0110 RA RB 6 Immediate

SW 0101 RA RB 6 Immediate

BEQ 1100 RA RB 6 Immediate

JAL 1000 RA 9 Immediate

JLR 1001 RA RB 6 Immediate

LM 0110 RA 9 Immediate

SM 0111 RA 9 Immediate

 4

 Data path for pipelined microprocessor

Each of the processor components have been implemented as a separate block. These processor

blocks were integrated into different stages.

A. Fetch stage

B. Decode Stage

C. Register Read stage

D. Execution stage

E. Data memory access page

F. Register write back stage

Integration of Processor Components

Each of the processor components have been implemented as a separate block.These processor

blocks were integrated into different stages:

1. Instruction Fetch Stage

 It consist of PC register, incrementer and instruction memory.

 With every clock cycle, PC gets incremented by 1. The instruction is fetched from

instruction memory corresponding to the address of the PC.

 PC, PC+1, and instruction is passed to decode stage via registers.

2. Decode Stage

 The decoder component have been instantiated over here.

 The control signal are generated by decoder block are passed to register read stage along

with PC and PC+1 via register.

 The control signals are generated for register read stage, execute stage, memory stage and

write back stage.

3. Register read stage

 Register file is instantiated in register read stage.

 Based on opcode and remaining instruction bits, the controller generates the A1 and A2

(address lines for register). The data D1 and D2 are passed to execute stage via registers.

 5

4. Execute stage

 In execute stage, actual ALU task is performed.

-ADD

-NAND

-Address computation for Load/Store instruction

-Shift/Rotate

-Carry zero flags are updated after ALU operation is performed.

The control signals decides which ALU task needs to be performed. The

data/address/PC/PC+1/CZ flag/control signals are all passed to memory access stage via

register.

5. Data memory access stage:

 The data memory is instantiated over here.

 For Load instruction, the address computed from execute stage is given to address of data

memory. The data_out from data memory corresponding to address is passed to write back

stage. During this process, memory read signal is high, memory write signal is low.

 For Store instruction, the address computed from execute stage is given to address of data

memory. The data from previous stage D1/D2 is given to data_inof data memory. During

this process memory write signal is high and memory read signal is low.

 For other instruction, data memory access will not come into play although the instruction

will consume clock cycle for data memory access stage.

6. Write back stage

 The data from data_memory/ ALU output is written into register file corresponding to

write address A3.

 The control signal will determine which of these will be selected as to be written in register

file.

 Approach of implementation

1. Components of stages

 In ALU component, we implemented PC incrementer, sign extender, 16 bit adder, NAND,

n bit register (different pipelined stages).

 6

2. Stages interconnection

 The common file Datapath contains integration of all stages. The output of one stage in

form of signals are interconnected and passed on to next stage.

3. Data forwarding logic implementation

 When the destination address matches with the source address, the Data forwarding logic

generates a signal such that data is forwarded from memory access stage/ writeback stage to

execute stage for the next dependent instruction.

4. Instruction memory and Data memory

 Address range of instruction and data memory is from 00 to ff.

5. Testbench and package component

 The test bench generates clock, 50ns reset pulse to reset all initial values of all registers to

zero.

 Modelsim simulation and testing of instructions.

 The instruction.txt file contains the set of instructions that needs to be executed. The

instructions is encoded into hexadecimal format imstruction.mem file using a python script. Its

serves as instruction memory. Similarly data memory is loaded with constant values.

 The simulation results shows the execution of instruction in every clock cycle thus

achieving pipelining of instructions.

 Modelsim simulation and testing of instructions.

 The analysis and synthesis of the design was performed on Quartus. Once the analysis,

synthesis, fitter(place and route), Assembler (Generate Programming files), TimeQuest Timing

Analyser and EDA Netlist Writer steps are completed, then the clock and reset pins are assigned

to the design using pin planner. The SignalTap II Embedded Logic Analyzer is a system-level

debugging tool that captures and displays signals in circuits designed for implementation in

Altera's FPGAs.So by using Signal Tap II Logic Analyser from the tools menu, we have

programmed our design on the FPGA chip. Once the design is programmed, we can view the

outputs as waveforms in different registers and memory elements.

 7

 Convolution Block Implementation

A separate convolution block is implemented for DSP application. The pipelined processor

has 8 register each of 16 bits. So convolution block for 4 input points is implemented.

(R0 , R1, R2, R4) * (R5, R6, R7, R8)

The output of convolution is of length 7. So atleast 7 write cycles is required to write back in

registers thereby requiring 7 cycles stall.

We were unable to integrate the convolution block in overall datapath because of large

number of stalling is required.

The logic for convolution is implemented as follows

S0 <= R4*R0

S1 <= R5*R0 + R4*R1

S2 <= R6*R0 + R5*R1 + R4*R2

S3 <= R7*R0 + R6*R1 + R5*R2 + R4*R3

S4 <= R7*R1 + R6*R2 + R5*R3

S5 <= R7*R2 + R6*R3

S6 <= R7*R3

• Conclusion:

Hence the pipelined microprocessor and a separate convolution block is implemented is

implemented and tested.

